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Parametric excitation of surface waves in a container under vertical forcing is 
investigated in detail, by an averaged Lagrangian method due to John Miles, and a 
system of evolution equations of third-order nonlinearity is presented for the case 
that the forcing frequency is chosen to be near twice the frequencies of two nearly 
degenerate free modes. The system of first-order differential equations in four 
variables which are derived from an averaged Hamiltonian is considered in a unified 
fashion, and the analytical results are compared with three experimental obser- 
vations. It is found with the help of numerical integration that this dynamical 
system yields not only excitation of a single-mode state, but also interaction between 
two modes in which each mode oscillates either periodically or chaotically. These 
results are in good agreement with the observations, except for one case in which 
nonlinearity is considered to be too strong. As a fourth case, homoclinic chaos in the 
Hamiltonian system of two-degrees of freedom without damping is studied 
numerically. It is suggested that the chaotic mode competition observed in the 
experiments is different from the homoclinic chaos. 

1. Introduction 
Surface waves of a liquid in a container subject to vertical oscillation are being 

extensively investigated from the viewpoints of low-dimensional chaos in Hamil- 
tonian systems with or without damping. In  such experiments, various patterns of 
standing waves are observed in the free surface. Faraday (1831) and Rayleigh (1883) 
studied experimentally such excitation of surface waves, and noted that the 
frequency of the excited waves was typically one half of that of the forcing. 
Benjamin & Ursell (1954) showed that the linearized theory of irrotational wave 
motions of an inviscid fluid in a container leads to an infinite set of Mathieu 
equations, which allow such solutions oscillating with a subharmonic frequency. 
Relative to the non-inertial frame of reference fixed to the fluid container, the 
external forcing is equivalent to oscillation of the acceleration of gravity, and the 
problem is reduced to that of parametric resonance. 

More recently, with a view to detecting regular, irregular or chaotic wave motions 
in the nonlinear resonance, Ciliberto & Gollub (1985) carried out an experiment on 
parametric excitation of a cylindrical fluid layer in a circular vessel. They studied 
excitation of a pair of non-circularly symmetric modes and found an interaction 
between the two modes in which the wave pattern oscillates either periodically or 
chaotically with a period long compared with that of the forcing. Gollub & Meyer 
(1983) studied a sequence of symmetry-breaking bifurcations and a discontinuous 
transition to a spatially disordered state. Keolian et ul. (1981) and Keolian & 
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Rudnick (1984), using liquid helium and water in a thin annular trough, observed 
both period-doubling and quasi-periodic motion involving three modes. 

Miles (1976) proposed a mathematical formulation of the weakly nonlinear 
problem of surface waves in a cylindrical basin, in which the Lagrangian and 
Hamiltonian functions for the system are constructed in terms of the generalized 
coordinates of the free-surface displacement. Weak dissipation is included primarily 
to account for friction a t  the container walls. 

Before considering the present problem of parametric excitation of surface waves, 
we briefly describe how this formulation has been applied to related problems. In 
1984, i t  was applied to the resonant response of a damped spherical pendulum to 
horizontal oscillation of its point of suspension (Miles 1984a), then to the resonant 
excitation of surface waves in a circular cylinder subject to horizontal or vertical 
forcing (Miles 1984b, c ) .  The spherical pendulum is perhaps one of the simplest 
examples of a two-degrees-of-freedom oscillation with a degenerate frequency along 
two horizontal directions. The two degrees of freedom are uncoupled in the linear 
approximation, but are resonantly coupled by nonlinearity. Similar situations occur 
for a pair of surface wave modes of degenerate frequency w1 subject to a horizoi~tal 
forcing frequency D in the neighbourhood of resonance ( w ,  x 0, not a subharmonic 
resonance), the mode pair being those oscillating along two orthogonal horizontal 
directions in a circular cylinder of radius R. 

A system of evolution equations, i.e. ordinary differential equations of third-order 
nonlinearity with linear damping terms (with coefficient a) ,  has been given for a two- 
degrees-of-freedom system of resonant surface waves subject to  horizontal forcing. 
The evolution equations comprise two parameters which are a damping constant a 
and a resonance offset /3 = (Q-wI)/wl .  The equations reduce to the corresponding 
equations for either a spherical pendulum (Miles 1 9 8 4 ~ )  or a stretched string (Miles 
1984d) if coefficients of the nonlinear terms are fixed a t  certain appropriate constant 
values. Numerical explorations by Miles of the evolution equations for the spherical 
pendulum and surface waves disclosed that both of the systems exhibit a bifurcation 
to a steady periodic motion from a quiescent state and Hopf bifurcations to quasi- 
periodic motions, and further bifurcations to chaotic behaviour, under various values 
of the tuning parameter /3. However, the response of the string appears to be regular 
for all a and f l  according to the numerical results. 

Funakoshi & InouQ (1988) have performed a remarkable demonstration based on 
their experimental and numerical analyses on the horizontal excitation of surface 
waves in a circular container. They have shown that Miles’ evolution equations 
predict many features of the experimental observations on the regular and chaotic 
wave motions, and that in particular the chaotic trajectory observed in the 
experiment is in fact a strange attractor, i.e. it has a positive Liapunov exponent. 
The observed chaotic trajectories in a phase plane are found to resemble closely those 
obtained from their numerical integration. 

We now turn to the problem of the subharmonic resonance of surface waves in a 
vertically oscillat,ing basin, called Faraday resonance. Based on his nonlinear 
evolution equations, Miles (19844 found a resonant excitation of subharmonic 
modes of eigenfrequency o1 near 2w1 x SZ for the forcing frequency SZ. However, 
excluding the possibility of internal resonance between the eigenmodes (except for 
the equivalent mode obtained by an azimuthal rotation of in), he found no Hopf 
bifurcations to quasi-periodic motion. Note that the system without damping is 
integrable. (An extension to the case of two modes in subharmonic resonance is given 
in Miles 1988.) 



Two-mode interactions in parametric excitation of surface waves 375 

However in the presence of a 1 : 2  internal resonance for the two modes (wl : w p )  and 
in the absence of any other internal resonance, Holmes (1986) has shown 
mathematically that the weakly nonlinear dynamical system with forcing has 
transversal intersections of homoclinic orbits. This result implies that  Smale 
horseshoes, hence sets of chaotic orbits, exist in the phase space in near resonance 
20, x w2 x 52. It is interesting to  compare this with the analysis due to Miles (1984~)  
which shows that the exact internal resonance 2w, = w 2  does not lead to Hopf 
bifurcation to quasi-periodic oscillation, hence not to chaotic motions. In  this case of 
1 : 2  internal resonance, the nonlinear interaction terms are of second order. For a 
rectangular geometry, Nayfeh (1987) and Gu & Sethna (1987) analysed the problem 
of interaction between modes with frequency ratio 1 12 and found chaotic behaviour. 
Unfortunately experimental confirmation of these predictions for the case of 1 : 2 : 2 
resonance (for o1 : o2 : 52) remains to  be done. The efforts for the rectangular case were 
unsuccessful, since the requirement of this frequency ratio makes the fluid height 
relatively small, suppressing the nonlinear phenomena due to excessive energy 
dissipation (Feng & Sethna 1989). 

In the present paper we consider 1 : 1 :2  resonances, i.e. 2w, x 2w2 x 52, in which 
interactions are described by the third-order nonlinear terms in the evolution 
equations. We shall consider three typical cases in the subsequent sections, which are 
studied both experimentally and analytically. Fortunately, we already have 
experimental evidence of chaotic mode interactions from the work of Ciliberto & 
Gollub (1984, 1985), as mentioned above, where surface waves in a circular cylinder 
of radius R = 6.35 cm containing water of depth d x 1 cm were observed spatially 
and temporally by means of digitized optical signals. They found a pair of modes 
interacting competitively, which are denoted as the (4,3) and (7,2) modes. The 
eigenmodes of surface deformation can be described by double-integer indices ( I ,  m),  
more precisely given by the functions 

J I ( ~ l m  r )  [cos 18, sin lo], (1.1) 

where 7 is the radial coordinate, 6' the azimuthal coordinate, J,(x) the Bessel function 
of the order 1, and the wavenumber K~~ is determined by the boundary conditions. 
The linear theory due to Benjamin & Ursell(l954) predicts that  the eigenfrequencies 
of both modes are close. From their time series data of local light intensity, Ciliberto 
& Gollub constructed a chaotic attractor of correlation dimension about 2.2 in the 
phase space, which is required to have the embedding dimension 4 to represent the 
time series. 

Meron & Procaccia (1986a, b )  derived a set of amplitude equations for comparison 
to this experiment, based on the centre-manifold theorem and on normal-form 
theory. This analysis took advantage of the experimental finding (Ciliberto & Gollub 
1985) that there is a point in the parameter space where the transition to chaos 
occurs essentially directly from the quiescent state. This is in contrast to  many other 
cases where the chaotic motion sets in after a series of bifurcations. However, they 
treated the coefficients of the third-order nonlinear terms as free parameters so as to 
reproduce the observed phase diagram (instead of a direct calculation). 

Very recently Umeki & Kambe (1989) applied the Miles' formulation (1976, 1984a) 
to the same problem of the (4,3) and (7,2) mode interaction. They estimated the 
coefficient values of the fourth-order terms of the Hamiltonian. This is based on a 
fundamental principle of mechanics and leads to evolution equations for the mode 
amplitudes supposed to be equivalent to those of Meron & Procaccia (who neglected 
some nonlinear terms). The coefficients are expressed in terms of integrals of the 
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eigenfunctions (1.1) of the linear system and are given by a direct numerical 
evaluation, independently of the experiment. 

In spite of this difference, the evolution equations due to Umeki & Kambe yielded 
phase trajectories of mode competition between (4,3) and ( 7 , 2 ) ,  whose amplitudes 
have a slowly varying envelope compared to the fast oscillation a t  $2, the slow 
variation being either periodic or chaotic. These computed motions are found in the 
corresponding parameter regions in the diagram of the driving frequency 0 and the 
amplitude a, as observed experimentally. 

Recently, in a circular cylindrical container a t  the greater depth of about 5.5 cm, 
a different mode pair has been observed to exhibit similar competing interaction 
(Karatsu 1988). The new mode pair is represented as (1,2) and (4, l ) ,  which are lower 
modes oscillating at a frequency about half that  of the modes (4,3) and ( 7 , 2 ) .  
Miles’ evolution equations were applied to this new pair to  account for some of the 
experimental results. 

The third case we consider is the subharmonic resonance in a square or a 
rectangular cylindrical container. In  a recent experimental investigation of modal 
interactions in such geometries, helped by the analysis of the amplitude equations, 
Simonelli & Gollub (1989) have studied the dynamics of the interactions of two 
modes that are degenerate in the square layer but non-degenerate in the rectangular 
one owing to the symmetry breaking. They have found that the fully degenerate case 
yields no time-dependent envelope of amplitudes ; however, in a slightly rectangular 
case, both periodic and chaotic interactions between the modes are observed. 

On the other hand, the amplitude equations have been determined by Feng & 
Sethna (1989) from a perturbation analysis of the basic hydrodynamic equations. 
They have made a full bifurcation analysis of wave modes in a slightly rectangular 
cell. However, only the expected locations of the parameter values a t  which chaotic 
phenomena occur are presented together with experimental evidence of what 
appears to be chaotic behaviour. A bifurcation analysis was also made by Nagata 
(1989) for two completely degenerate modes in a square container. Crawford, 
Knobloch & Riecke (1988) developed a general bifurcation theory for mode 
interactions with symmetry and applied it to the experiment of Ciliberto & Gollub. 

Recently Umeki (1989) has studied the dynamics of such systems, based on Miles’ 
formulation, and found both periodic and chaotic trajectories in a phase space, and 
that the bifurcation diagram is very similar to the observations. However, in his 
analysis, a stable mixed standing-wave state, which has not been observed by 
Simonelli & Gollub, changes into a mode competition state by a subcritical Hopf 
bifurcation. 

In the present paper we derive results from the system of nonlinear evolution 
equations for the surface waves, and compare them with various known results. The 
mathematical formulation for the surface wave problem is briefly described in $ 2. 
Analysis of stationary states of the averaged system is given in $3. Comparisons are 
made between experimental observations and theoretical analyses for the three cases 
in $4. 

In $5, we consider homoclinic chaos which is represented by the present dynamical 
system for a different set of coefficients from those of the experimental cases. I t  is 
shown that, using a reduction method, the Hamiltonian system without forcing has 
homoclinic orbits, and that the presence of a small external forcing gives rise to a thin 
stochastic layer. However, when a small damping is added, this stochastic layer 
will disappear and solutions tend to a fixed point. This implies that the homoclinic 
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chaos in the Hamiltonian system and the chaotic mode competition observed in the 
strongly dissipative system are to be distinguished. 

2. Mathematical formulation 
I n  the study of nonlinear dynamics of surface waves of an inviscid incompressible 

irrotational fluid in a cylindrical container, three distinct methods, which should be 
equivalent, are normally used. Many works so far have been based on a classical 
perturbation method which uses two nonlinear boundary conditions a t  the free 
surface in the form of expansion with respect to the small parameter TK, where 7 is 
a surface displacement and K is a representative wavenumber. The second method 
relies on a canonical formulation of an average Lagrangian method due to Miles, 
based on a variational principle. The third one is a newly developed method by 
Meron & Procaccia (1986a, b )  who used normal-form theory together with the centre- 
manifold theorem. Here we take the second approach. 

In the Miles' formulation, the velocity potential c$ and the surface displacement 7 
are expanded as 

c$ = Z: c$n(t) $n(x, y) s e c h ~ n d c o s h ~ n ~ ,  

7 = C q n ( l )  $n(x, Y), 

(2.1) 

(2.2) 

where (2, y) and x denote the horizontal and vertical coordinates, respectively 
(figure i),  and the mode amplitudes c$,(t) and qn(t) are related as 

n 

n 

m 

where Zgm(7) is a matrix which depends on 7 nonlinearly. The eigenfunction kn 
satisfies the Helmholtz equation 

where VE = a;+ai, with the boundary condition for the normal derivative a$/ 
an = 0 on the container surface (n being the outward normal). A function $,,(x, y) 
represents an eigenmode in the horizontal cross-section S,  occasionally written as 
ern,, when the mode n is denoted by double indices (m,n). 

For some simple geometrical shapes of the cross-section S ,  the eigenmodes are 
readily given. For example, for a rectangular cross-section of side lengths M by N ,  the 
mode (m, n) is given by the eigenfunction 

(VE + K i )  $ f i  = 0, (2.4) 

(2.5) 

with the wavenumber K,, = [ (m/M)2  + (n/N)2]h and S,, being the Kronecker's 
delta. 

For a circular cross-section of radius R, the eigenfunction is 

(2.6) 
1 

( P m n ,  P m n )  ( r ,  0) = -Jm(Kmn r )  (COS m0, sin me), 
Nmn 

where Jm(x) is a Bessel function of mth order, K,, = jh,JR, j;,, being the nth zero of 
Jm(z). It should be noted that there are two completely degenerate components 
(m, n), and (m, n), for a circular cylinder owing to the symmetry of the shape of the 

13-1 
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z = O  

z = - d  

r y  

FIGURE 1 .  Configuration and frame of reference. 

container. Similarly, the ( m , n )  and ( n , m )  modes for a square container are 
degenerate. Here we use the term 'component' to  distinguish the completely 
degenerate modes. 

We consider two modes (ml ,  n,)  and (m, ,  n,) in subharmonic resonance, responding 
to the external vertical forcing 

with Q = 2w, w z w ,  z w ,  (Q being called the driving frequency, IJ thc acceleration 
due to gravity). The displacement of the ith mode is expressed as 

(2.7) y i  = eaibi(.r) cos ot + qi(7) sin wt + €(Xi cos 2wt +Ed sin 2wt + C i ) ] ,  

where ai = (K,tanhK,d)-l, 7 = e2wt, h = (y/pg) i  

and e is a small parameter to be specified later ; pi = qi = 0 except for i = 1,2 and 
Ai = Bi = C, = 0 except for the modes interacting with the resonant, modes i = 1,2 .  
Here pi ,  qi etc. are made dimensionless by a, (which differs from Miles' formulation). 
The average Lagrangian function derived by Umeki & Kambe (1989), following Miles 
(1984b.c). is exmessed as 

2 
(')a' - I C ( p i q a - p , q i ) + H ,  a3e4w2 2 

where a = a, ( x a , ) ,  and the Hamiltonian H is given by 

1 ,  

2 i-1 
H = - X [Ao(P: - q f )  + pt (pi + qt )  + $4 (pf + 4f)'I + &'(P: + &) (pi + q i )  + P M 2  5 (2 .9)  

where the forcing A,, and the frequency offset pi of the ith mode are normalized as 

(2.10) 

(2.1 1) 

In (2.9) we define M = P192-P291, (2.12) 

A , = A ,  A , = B ,  (2.13a, b )  

where A ,  B.  C', D are the constant coefficients (defined in Umeki & Kambe 1989) 
which depend on the mode pair, the geometrical shape of the container. the depth d,  
the surface tension y and the forcing frequcncy 52. 
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The coefficients A ,  B,  C’, D and p1,p2 have special relations according to the 
symmetry and degeneracy of the boundary conditions. For example, we have (i) 
A = B = C ,  p1 = ,8, for mode 1 given by (m,  n ) ,  and mode 2 by (m,  n) ,  ( m  =k 0) in the 
circular container, (ii) A = B, p1 = p2 for mode 1 = (m,  n )  and mode 2 = (n,  m)  
( m  =I= n )  in the square container, and (iii) A = B but p1 =+ p2 for (m,  n)  and (n, m )  in the 
slightly rectangular container since a small difference of A and B is considered as an 
effect of order higher than the third nonlinearity. For two modes (ml ,  n , )  and (mz ,  n,) 
in the circular container with different m and n values, there are no such equalities. 
In this case, although each mode has two completely degenerate (c, s) components, 
we can deal with them like a single mode. This is based on the property (Umeki & 
Kambe 1989) that an angular momentum associated with a pair of (c, s) components 
(related to a mode rotation), even if it  existed initially, tends to vanish owing to the 
linear damping, resulting in the state of zero angular momentum of no mode rotation 
(or no azimuthally travelling wave state). Thus the (c, s) component pair behaves like 
a single mode. This feature does not hold for the horizontal forcing problem. 

The dynamical equations are given by Hamilton’s equations of motion with 
additional damping terms of a damping constant ai: 

($+a6)(pi,qi) = (-$,$-)H for i = 1 and 2. (2.14) 

Writing Ti = pi+iq, in complex notation, the evolution equations are reduced to 

1 -+al Fl = - A , q  - [pl +A1F1l2 + (C+D)  IF,^^] F, + D e  3, 

1 -+a, T2 = - A , ~ - [ ~ , + ~ ~ F ~ ~ ~ + ( C + D ) ~ ~ , ~ ~ ] ~ , + + D ~ ~ ,  (2.15b) 

where an asterisk denotes the complex conjugate. Equilibrium states are given by 
the condition d/dr = 0. The bifurcations of those equilibrium states were considered 
by Feng & Sethna (1989) with the relations A = B ,  C > A > O ,  D < O  and 
A + C + D  > 0. The damping constant ai will be determined empirically such that the 
minimum value of the forcing, aOmin, required to excite a single mode coincides with 
that of observations. We take ai as a1 = a, = 01 in the following analysis, although a 
non-zero value 01, -a2 is reported by Simonelli & Gollub. 

( 2 . 1 5 ~ )  c!r ) 
.(:! ) 

3. Nonlinear evolution equations 
We consider the dynamical system (2.14) or, equivalently, the two-degrees-of- 

( 3 . l a )  

(3 . lb )  

( 3 . 1 ~ )  

( 3 . l d )  

where the external forcing A,, the damping coefficient a, and the frequency offset pi 
are given by 

A ,  = a,/ae2, CL = aOmin/a2, (3.2a, b )  

freedom Hamiltonian system with linear damping terms : 

p ,  = -apl + (-PI + A ,  -Ari - 0:) q1 +DMp,, 

Q., = - aq, + (p, + A ,  + Ar; + Cri) p ,  +DMq,, 

p 2  = -up,  + ( -p2 + A ,  -Bri - Cr;) q2 -DMpl, 

a, = --q, + (p, + A ,  +Bri + Cr:)p ,  -DMql, 

pi = ( W 2 - - w : ) / ( 2 2 w 2 ) ,  (3.3) 
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A ,  B, C, D are constant coefficients, M = p ,  q2 - p ,  q,, and ri = p i  +qi for i = 1 and 2. 
We take the small parameter E as 

€2 = ;(w; - w f ) / w 2 ,  (3.4) 

so that the relation P1-P2 = 1 holds. 
A general formulation for evaluating the coefficients of nonlinear terms is given by 

Umeki & Kambe (1989). We have applied this formulation to the three cases of the 
experiments of (i) Ciliberto & Gollub (1985, denoted by CG) for (4,3) and (7,2) modes 
in a circular cell, (ii) Karatsu (1988, denoted by K )  for (1,2) and ( 4 , l )  in a circular 
cell, and (iii) Simonelli & Gollub (1989, denoted by SG) for (2,3) and (3,2) modes in 
a rectangular cell. The normalized values of coefficients A ,  B, C, D calculated for the 
three cases are 

( A , B , C , D )  = (1.0, -0.16,1.2, -7.9) forCG, (3.5) 

= (-1.0,41,5.0, -27) forK,  (3.6) 

= (0.26,0.26,0.32, - 1.6) for SG. (3.7) 

We do not show these computations here; for the details, see Umeki (1989) 
concerning SG. We have made some corrections to  the previous results, so the values 
(3.5) for CG are different from those of Umeki & Kambe (1989). The dependence of 
the coefficient values on the physical parameters is as follows. The values for CG are 
sensitive to the surface tension because the third resonant mode exists in the region 
of external forcing frequency examined, and the resonance condition is affected 
largely by the surface tension. Considerable changes of those values occur in the 
following two cases : when the capillary length A varies between 0 and 0.28 cm with 
fixed values of the forcing frequency and other parameters (depth, radius, etc.) ; and 
when the forcing frequency varies with other parameters fixed. But the coefficients 
for the cases of K and SG are not so sensitive to the forcing frequency and the surface 
tension. 

The dynamical system (3.1 a-d) has five different stationary states. Introducing 
the notation r = ( r l , r z )  = ( p l , q l , p 2 , q 2 ) ,  they are expressed as 

r = ( 0 , O ) ;  Quiescent state ( Q )  

(r, ,  0 )  : Mode-1 standing-wave state (Sl)  

(0 ,  r2 )  : Mode-2 standing-wave state (S2) 

(II, r2) with M = 0:  Mixed standing-wave state (Ma) 

( r l ,  r2)  with M =t= 0:  Mixed standing-wave state (Mb). 

The quiescent state is stable (or unstable) if A ,  < (or > ) (pi +a2);. The curve given 
by 

A ,  = (pi + a”; (3.8) 

in the (f,,a,) diagram is a bifurcation curve from a quiescent state to  a mode-i 
standing-wave state, where the driving frequency f ,  = D/2n is used for comparison 
with experiments. The point where two curves (3.8) for i = 1 and 2 intersect is named 
the X point and the frequency and the amplitude at this point X are specified by a 
subscript asterisk as f * .  
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The component of the mode-i standing-wave for A, < 0 (A,  being defined by (2.13)) 
is given by 

ri* = ( P i + , Q i * )  

For A ,  > 0, the plus and minus signs in the right-hand side of (3.9) are inverted. 

components) can be shown to satisfy one of the two relations 
Mixed standing-wave states (i.e. fixed points of (3.la-d) with all non-zero 

Ap+(A-C)r2,+(C-B)rt = O ,  (3.10) 

p1 +pZ + (A +C+D) ri + (B+ C + B )  ri = 0, (3.11) 

where A/? = p1-p2 ( =  1 ) .  Stationary states satisfying (3.10) and (3.11) are named Ma 
and Mb, respectively. The two states satisfying the condition (3.10) are distinguished 
by a subscript +. The Ma state yields the relation 

M = P , q , - P 2 Q 1  = o .  
The Ma, state is given by 

(A: - a2)i, 

(3.12) 

( 3 . 1 3 ~ )  

(3.13b) 

( 3 . 1 3 ~ )  

(3.13d) 

The regions of Ma+ or Ma- are restricted in the parameter space (f,, a,) given by the 
condition that the right-hand sides of (3.13a-d) are all positive. 

For the coefficients (3.6) of K, these regions are 

(A: - 2); < p1 < (A: - a2)i 
C AB-C2 

C-B (C-B)Ao 
(A; - 

A AB-C2 
C - A  (C-A)Ao 

(A: - a2)$ (3.14 a) 

for Ma,, and 
C AB-C2 

C-B (C-B)Ao 
- (A:-E~)$+-- (A: - a2)i < PI < - (A: - a2)i 

(&-a2)$ (3.14b) 
A AB-C2 

C - A  (C-A)A, 
--- 

for Ma-. 
For the coefficients (3.5) of CG and (3.7) of SG, these regions are 

AB - C2 p1 < ( A : - a 2 ) i - A +  (A: - a'); 
C-A (C-A)Ao 

( 3 . 1 5 ~ )  
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for Ma,, and 
A AB- 6'' 

C - A  ( C - A ) A ,  
p1 < -(A;-a*);-- + (A; - a2)i (3.15b) 

for Ma-. 
In  every case, the regions corresponding to the Ma state are located far from the 

point X. Since these parameter regions are out of the range of experimental 
investigations for (3.5) and (3.7) or confined to a small region for (3.6), the Ma state 
is less important. 

The stationary state Mb is given by solving the following equation with (3.10) : 

> (3.16) 
.'{(PI +p2 + ( A  + C) rt + (B + C )  T ; } ~  + {2a2 + tUJ'I2 

4a2 + u2 A: = 

where U = Ap + ( A  - C )  r: + (C -B)  r i ,  

V = A/3 + ( A  - C -D) rf + (C +D -B)  ri .  

The bifurcation curves of Mb from the stat,es of S1 and S2, are given by 

and 

-Bp,+(C+D)p, t )I A ,  = A,,(/3,) = a'+ [ { B+G+D 

-AP2 + (C + D) PI A ,  = A,,(/3,) E a'+ [ { A t C f D  

(3.17) 

(3.18) 

We have examined the stability of the Mb stationary state by solving the quartic 
equation with respect to the eigenvalue u of a small perturbation of the form (F1,gl, 
q2, g2) exp (u7). It is found that there exists a parameter region near the point X 
where the Mb state is unstable and Hopf bifurcation occurs; moreover that the 
numerical integration yields non-periodic behaviour of mode competition between 
mode 1 and mode 2.  We consider further details of the comparison with the three 
experiments in the next section. 

4. Comparison with experimental observations 
The system of nonlinear evolution equations developed in $ 3  is investigated here 

in detail for the three cases of the nonlinear coefficients (3.5)-(3.7), corresponding to 
experiments, and the results of numerical analysis are compared to the observations. 
Each experiment is first reviewed briefly. 

4.1. Interaction between (4,3) and (7,2) modes 

4.1.1. Experiment 

In the experiment of Ciliberto & Gollub (1985), the fluid cell was mounted on the 
cone of a loudspeaker in a way that allows vertical forcing with an amplitude of 
0-200 pm. The fluid layer was about 1 cm deep in a cylindrical vessel of interior 
radius R = 6.35 em. The driving frequency is derived from a synthesizer (and a power 
amplifier). The surface deformation was studied optically by a parallel expanded 
laser beam passing vertically through the cell. The image formed on a translucent 
screen located 6 cm above the fluid surface was recorded on videotape and digitized. 
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FIGURE 2. Surface mode contours @ = ( T ,  8)  = const: (a)  n = (4,3) and ( b )  n = (7,2).  

From weakly nonlinear theory, the surface displacement is written as a 
superposition of excited modes as (2.2) and (2.6). In  the present case, we have 

( 4 . 1 ~ )  

q,(t) = pn cos wt + qn sin wt + (small harmonic terms), (4.1 b )  

the mode n being denoted as (1,m). 
In  general the angular phase $ lm may be time dependent, but for the phenomenon 

in the circular cylinder described here, the phase was observed to be time 
independent. This is consistent with the property of no mode rotation described in 
Q 2. A mode develops a parametric instability when the corresponding eigenfrequency 
is approximately in resonance with one half of the driving frequency f ,  = 0 1 2 ~ .  This 
leads to a standing wave oscillating at the subharmonic frequency if,. When the 
mode excitation is not single, there is a slow modulation of the mode amplitudes, and 
each amplitude is written as (4.1 b )  with the slowly varying envelops p ,  and q,. 

The behaviour of the system was plotted in a phase diagram of the driving 
frequency f, and amplitude a,. A region near the mode competition between (4 ,3 )  
and (7 ,2 )  modes was studied in detail. Each surface mode pattern is shown in 
figure 2, and the phase diagram together with the results of the analysis is given in 
figure 3. The driving frequency was about 16 Hz. Above the stability boundaries a 
surface wave oscillating at half the driving frequency is excited in a single stable 
mode, whereas below them a surface wave is not excited. The shaded area is the 
region of mode interaction, in which the wave can be described as SL superposition of 
the (4,3) and (7 ,2)  modes. The mode amplitudes have a slowly varying envelope with 
the variations being either periodic or chaotic. 

4.1.2. Results of analysis 
According to the specific values of (3 .5) ,  we have A-kC+D < 0 and B+C+ 

D < 0, therefore the region including Mb is given by f,, > f *  and A,, < A, < Ao2. This 
is consistent with the observation that the periodic and chaotic mode competitions 
occur in the region f, > f* of the diagram in figure 3. Figure 4 shows a bifurcation 
diagram which is obtained by plotting the value M = p ,  qz -p2  q1 a t  q2 = 0 for the 
driving amplitude a, with a fixed frequency f o  = 16.05 Hz. The dynamical equations 
(3.1 a-d) are solved numerically using the fourth-order Runge-Kutta scheme. There 
exist periodic windows between chaotic orbits, which are observed in the experiment 



384 T .  Karnbe and M .  Umeki 

15.7 15.8 15.9 16.0 16.1 16.2 16.3 

f o  (Hz) 
FIGURE 3. Stability diagram in the (fa, Za,)-plane for the CG case. Observed and predicted stability 
boundaries are denoted by thick and thin curves respectively. Periodic and chaotic mode 
interactions are predicted to occur in a region between the dashed curve and the dashed-dotted 
curve given by equations (3.17) and (3.18). 
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FIGURE 4. Bifurcation diagram for the CG case. M is plotted a t  q2 = 0 for various forcing 
amplitudes a, with a fixed f, = 16.05 shown by a dashed-dotted-dotted line in figure 3. 
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of CG. The frequency fa lies in a section in which non-periodic behaviour is expected 
to occur by the theory. In  the diagram we can see the bifurcation to chaotic 
behaviour and periodic windows. Satisfactory agreement has been obtained between 
the theoretical analysis and the experiment in this case. 

4.2. Interaction between (1,2) and (4, 1) modes 
4.2.1. Experiment 

An experiment on a fluid layer a t  a moderate depth was carried out by Karatsu 
(1988),t using an electromagnetic driving mechanism that had more power than a 
loudspeaker. A circular-cylindrical container of radius R = 7.2 cm, filled with water 
of depth d = 5.5 cm, is oscillated vertically with an amplitude of O.OFk2.0 mm. The 
driving frequency is derived from a synthesizer. The surface oscillation was measured 
by a wave meter (wire gauge), and the signals are recorded digitally at a sampling 
time of 20 ms. 

In  this experiment, a new mode pair of resonant interaction has been found. The 
modes are excited as a subharmonic resonance of half the driving frequency of about 
8.8 Hz, and are expressed as (1,2) and ( 4 , l ) .  The driving amplitude was monitored 
by a capacity sensor. 

Figure 5 shows the surface wave patterns of the (1,2) and ( 4 , l )  modes. The 
observed phase diagram in the plane of the driving frequency and amplitude is 
illustrated in figure 6, together with the linear stability curves without damping. 
Since the difference between the two eigenfrequencies is very small (about 0.2 YO) for 
this pair, the experimental stability boundaries for each mode are almost overlapping 
and indistinguishable. This is in quite a contrast to the previous case of 54.1. The 
region marked as (1,2) (or ( 4 , l ) )  shows where the single mode ( 1 , Z )  (or ( 4 , l ) )  is 
excited. The shaded areas are the regions of mode interaction, which occur on the left 
side of a vertical symmetry line of the stability curve, as compared with those for the 
(4,3) and (7,2) modes which appear on the right side. In  this case too the mode 
amplitudes have an envelope which varies either periodically or chaotically. 

The vertical displacement of the surface was observed a t  two fixed stations located 
symmetrically with respect to the centre (180' separation with the same radial 
position). The signal from each station was recorded digitally a t  a sampling time of 
20 rns. The Fourier spectrum for the single-mode excitation has discrete peaks at the 
fundamental frequency ifo and its higher harmonics (figure 7 a ) .  The periodic 
alternation of the two surface modes is characterized by a spectrum with a peak a t  
a lower frequency in addition to the fundamental and by their interaction peaks. In  
the chaotic alternation, the spectrum peaks become broad and tend to be continuous. 
Especially notable is the excitation of a continuous spectrum a t  low frequencies 
(figure 7 b ) .  

The surface displacement in the state of two-mode excitation may be represented 
as 

~ ( t ,  r ,  6) = Rl(t) J 1 ( ~ 1 2  r )  cos (@+A) +B2(t)  J4(~41 r )  cos (46+ $2) 

+ (small correction terms). (4.2) 

It can reasonably be assumed (as mentioned before) that the phases and $2 are 
constant. Denoting the two measuring stations by r = ro and 0 = O , X ,  we have the 
wave heights (4.3a) ql(t ,  T o ,  0) = B,(t) +B2(% 

T&,rO> n) = -B,(t) +B,(t)> (4 .3b )  

t This work is described here at some length because the first report was written in Japanese. 
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FIGURE 5. Surface mode contours $,,(T, e) = const: (a)  n = (4 , l )  and (6) n = (1,Z). 

f o  (Hz) 
FIGURE 6. Observed phase diagram in the (f,,  2a,)-plane, together with stability boundaries of 
the linear theory. In the region denoted as P, C periodic or chaotic interactions are observed. 

where Bi(t) = Ji(Ki2 To)  COs$ i ,  B2(t) = R ,  J,(K,, Y o )  cOs$,. 

Therefore, the amplitude of each mode is obtained by addition or subtraction of the 
signals from the two stations : 

W )  = & 1 - 7 2 ) 7  B2 = &31+72). (4.4a, b)  

In this way, mode excitation has been recorded. Figure 8 illustrates three cases of 
mode amplitudes from the data sampled at every 20 ms for five minutes and shown 
in terms of the period T = l/fo of the driving oscillation : ( a )  a single-mode excitation 
of (1 ,2) ,  ( b )  a nearly periodic alternation, and ( c )  a chaotic mode competition. 
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FIGURE 8. Mode amplitudes over a five minute period: (a )  single-mode excitation of the (1 ,2)  
mode; ( b )  nearly periodic alternation and ( c )  chaotic mode competition. 

4.2.2. Results of analysis 

From the coefficient values of (3.6), we have inequalities A + C + D  < 0 and 
B + C + D  > 0 for this case, and the region including Mb is given by PI 2 0.5, A ,  > 
A,, and /3, < 0.5, A ,  > A,*. Figure 9 shows the parameter-space diagram (where the 
difference of two eigenfrequencies is taken to be larger than the value calculated by 
linear theory). The parameter-space regions where S2 and Mb were found in the 
experiment (figure 6) coincide with the result of the theoretical analysis (figure 9) 
based on the coefficients (3.6). However, the regions of periodic and chaotic mode 
competition do not coincide. I n  this respect it should be noted that ratio of the wave 
amplitude to the wavelength in the experimental case of mode competition is of order 
unity, not small a t  all, implying that nonlinearity is too strong. Therefore higher- 
order nonlinear terms will be required to account for the discrepancy not only in the 
Hamiltonian but also in the damping effect. The observed S 1 region on the left side 
is not predicted either. Thus the prediction by the third-order evolution equations is 
not so satisfactory in this case. 

FIQURE 7. Fourier spectrum of the signals at  a fixed station. ( a )  Single-mode excitation 
and ( b )  chaotic mode alternation. 

(4, 1) (172) 
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FIGURE 9. Predicted stability diagram for the K case. The lettering in each region refers to the 
stable state. A periodic mode competition is confined to a small region P near the point X. 

4.3. Interactions in quadrilateral cells 
4.3.1. Experiment 

In  a square cell, two surface modes that transform into each other under a 90" 
spatial rotation have a degenerate eigenfrequency. This degeneracy is broken in a 
rectangular cell. The effect of detuning of two resonant modes in these geometries has 
been investigated by Simonelli & Gollub (1989). Such a degeneracy of the surface 
waves exists in a circular cylinder too, i.e. there are modes which transform into each 
other under a spatial rotation. However, no attempt has been made so far to 
investigate the effect of detuning by making the cross-section, say, elliptic. Resonant 
interactions of two nearly degenerate modes which were studied in the circular 
cylinder are concerned with modes having different wavenumbers both in the radial 
and angular coordinates. 

The experiments by Simonelli & Gollub were performed in a square cell of size 6.17 
by 6.17 cm and a rectangular cell of size 6.17 by 6.6 cm, with a depth of 2.5 cm. The 
vertical oscillation was provided by an electromagnetic shaker driven by a 
synthesizer. The driving amplitude (more directly, vertical acceleration) was 
measured with an accelerometer. In  this experiment, the stability boundaries were 
determined in an automated fashion as a function of driving amplitude a, and 
frequency fo. The surface deformation of each spatial mode in a general rectangular 
geometry has the form 

(4.5) 
mnx nny 

Z, , ( t ,  x, y) = [A,,(t)  cos wt +R,,(t) sin wt]  cos- cos -, 
L x  L, 

where w = nf,,, m and n are integers, and Lx and L, are horizontal dimensions of the 
cell in the x- and y-directions. The coefficients A,, and B,, are the in-phase and out- 
of-phase amplitudes (with respect to  the driving phase) that vary on a timescale 
much larger than l/w. The mode Z,, is denoted as (m, n).  Detailed observations were 
performed on the mode pair (3 ,2)  and (2 ,3) .  
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In the completely degenerate case (square cell), three primary regions have been 
identified in the parameter space of fo and a,,: flat state, mixed state and pure state 
(owing to the symmetry, either pure state can be found depending on the initial 
conditions). There are also intermediate regions between those states, characterized 
by the coexistence of two of them. However, no alternation of amplitudes between 
the two degenerate modes has been observed. Thus the x 3  symmetry of the fluid cell 
yields no competitive interaction between two resonant modes. 

The effect of removing the degeneracy was investigated with a rectangular cell. 
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FIGURE 11. Poincark map of the equations (5.3) on the plane (z,y) = ((2P1)~cosQ,, (2Pl)isinQ,) at 
Q2 = 0, showing homoclinic chaos. Initial values are Pz = 0.25, &, = 0, PI = 0.001, 0.05 and Q1 = 
2xk/40  (k = 1 . . . ,40). 
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The aspect ratio 6.616.17 x 1.07, different from 1 ,  produces a difference of about 
1.5% between the resonant frequencies of the two modes (3 ,2)  and (2 ,3) .  Four 
primary regions are identified in the parameter space : flat state ; pure (3 ,2)  state ; 
pure (2 ,3)  state; and the state of periodic or chaotic time dependence. There are also 
intermediate regions between those states. The last time-dependent state is the 
consequence of symmetry breaking of the container geometry. 

4.3.2. Results of analysis 
From the coefficients (3.7) for the rectangular cell, we have A + C + D  =B+C+D 

< 0 and the region including Mb is given by PI 2 0.5 and A,, <A, ,  < Ao2.  The 
parameter-space diagram from the theory is shown in figure 10 ( b )  and is compared 
to that of the experiment in figure lO(a). Topological coincidence in the diagram 
between experimental and theoretical results is obtained. The only difference is that 
there exists a stable Mb state in the analytical result, but it is not found in the 
experiment. The parameter region where the Mb state is stable in (b)  is replaced by 
the coexistence of the S1 and S2 states in (a ) .  It might be an effect of nonlinearity 
of higher orders, or due to the smallness of the one-mode amplitude of the Mb state, 
that the mixed state is not observed. 

5. Homoclinic chaos in an averaged Hamiltonian system 
We consider here homoclinic chaos of our dynamical system. It has been shown 

numerically by Umeki (1989) that the Hamiltonian system (2.14) for suitable 
parameters without damping (a = 0) and forcing (a, = 0) has homoclinic orbits, and 
that when a small forcing is added, homoclinic orbits start to have transverse 
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intersections. This is similar to the mathmatical work of Holmes (1986) on the 1 : 2 : 2 
resonance but different with respect to the nonlinearity : it is second-order in Holmes’ 
analysis but third-order in ours. This difference comes from the internal-external 
resonance conditions. 

We perform the following canonical transform to the dynamical system (3.1 a d )  : 

(q , ,p i )  = ([~PJ~COS o,, [2F$+sin a,), (5.1) 

and perform a further canonical transformation, 

Ql = Q,+Q,, 0 2  = Q 2 ,  p2 = Pz-pl, = Pl. (5.2) 
Then the system is expressed as 

Pl = -2DPl(P,-P,)sin2Ql-2A,P,sin2(Q,+Q,)-2aPl, ( 5 . 3 ~ )  

Q1 = A/3+EPl+FP2-D(P2-2P,) C O S ~ Q , - A , [ C O S ~ ( Q ~ + Q , ) - C O S ~ Q , ] ,  (5 .3b)  

P, = -2A,[P, sin2(Ql+&,)+(P,-P,)sin2&,]-2aP,, (5.3c) 

Q, = /3, + 2BP2 + FP1 -DPl cos 2Q1 -A, cos 2Q,, ( 5 . 3 4  

where E = 2(A+B-ZC-D), F = 2(C-B)+D. 

Using the reduction method (Guckenheimer & Holmes 1983), we consider the 
Poinear6 section on the plane Q, = const. with a = 0 (a conservative Hamiltonian 
system). The parameters A,  B, C, D,  pl, Pz are taken as 

A = B = C = - 3 ,  D = - 4 ,  P 1 = O ,  / 3 ,= -1 .  (5.4) 
The assumptions for the reduction method are (i) existence of a homoclinic orbit 
when a,  = 0 and (ii) Q, + 0 on and in a neighbourhood of the homoclinic orbit. We 
choose the parameters so as to satisfy these assumptions. One of the results of our 
numerical analysis are shown in figure 11 for various initial conditions. We observe 
stochastic layers near the homoclinic orbit in the form of figure 8 in addition to 
several invariant manifolds. 

When a small damping is added, the assumption (ii) does not hold. This is 
inevitable because the orbit tends to an attractor, which may be a fixed point (or a 
periodic orbit, or a strange attractor). The type of the attractor should be determined 
by a bifurcation analysis. In  the above case it is a fixed point. The assumption 
Q, =l 0 does not hold in the attractors for many sets of the parameters. 

This result implies that the non-periodic mode competition observed in the 
experiments occurs in strongly dissipative systems and is quite different from the 
homoclinic chaos as considered by Holmes (1986). Therefore we have to distinguish 
the two kinds of chaotic motion. 

6. Summary 
Based on Miles’ formulation, a system of nonlinear evolution equations is derived 

as an averaged system for parametric excitation of surface waves under vertical 
forcing of amplitude a,, the forcing frequency fo being chosen at  near twice the 
frequencies of two nearly degenerate internal modes. The results of the analysis are 
presented in a unified fashion and compared with three experimental observations. 
The system of evolution equations for four variables is derived from an averaged 
Hamiltonian (two degrees of freedom) except for damping terms, and includes three 
kinds of linear terms which are characterized by a damping constant a, a forcing 
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amplitude a, and frequency offset pi (i = 1,2 ; corresponding to two internal resonant 
modes). The nonlinearity of the differential equations is of third order and described 
by four constant coefficients which are all different for the three experimental cases. 

As a fourth case, the Hamiltonian system without damping has been studied. The 
two-degrees-of-freedom system in the absence of external forcing has a homoclinic 
orbit, which is disrupted into a stochastic layer under a small external perturbation. 

The dynamical system of differential equations has five different stationary states : 
a quiescent state, two single-mode standing-wave states and two mixed-mode states. 
Further, there exist regions in the parameter space ( fo ,a , )  in which all of the 
stationary states are unstable. In  those regions, numerical integration has been 
performed, and time-dependent states have been found, which represent periodic or 
non-periodic (chaotic) behaviour of mode competition between the two internally 
resonant modes. 

Concerning the comparison with the three observations, the analytical results for 
a pair of (4,3) and (7 ,2)  modes in a circular cell are in satisfactory agreement with 
the experiment by Ciliberto & Gollub, and the results for the (2,3) and (3,2) mode 
pair in a rectangular cell are also in good agreement with the experiment by Simonelli 
& Gollub, except for presence/absence of mixed-mode excitation. However, for the 
(1,2) and ( 4 , l )  mode pair in a circular cell, the agreement is only modest, and in 
particular the time-dependent motions of the numerical integration are in a different 
place from the observation by Karatsu. This implies that nonlinearity of higher 
orders should be taken into consideration to account for the observed time- 
dependent state of chaotic mode interaction. 

The chaotic mode competition observed in the experiments is considered to be 
relevant to the homoclinic chaos of the Hamiltonian system of two degrees of 
freedom studied by Holmes (1986). However, the present analysis is counter to that 
view, and shows that the orbit tends to a point attractor, not to a chaotic attractor, 
when a damping is added. The chaotic mode competition observed in the experiments 
occurs in a strongly dissipative system, and is considered to be a quite different 
phenomenon from the homoclinic chaos of the present Hamiltonian system. 

One of the authors (T. K.)  remembers the pleasant days fifteen years ago when he 
stayed at Cambridge for sixteen months and spent with George Batchelor. This 
happy memory is always encouraging him during his study of fluid mechanics 
afterwards. 
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